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Bayesian Reasoning

6.873/HST951
Peter Szolovits

Simplest Example

• Relationship 
between a 
diagnostic 
conclusion 
and a 
diagnostic test
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Sensitivity (true positive rate): TP/(TP+FN)

False negative rate: 1-Sensitivity = FN/(TP+FN)

Specificity (true negative rate): TN/(FP+TN)

False positive rate: 1-Specificity = FP/(FP+TN)

Positive Predictive Value: TP/(TP+FP)

Negative Predictive Value: TN/(FN+TN)
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Receiver Operator Characteristic
(ROC) Curve
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What makes a better test?
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OK

How certain are we after a test?

D?
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Pi+1(D j) =
Pi(D j)P(S|D j)

Pi(Dk)P(S|Dk)k=1

n
∑

Bayes’ Rule:

Rationality

• Behavior is a continued sequence of 
choices, interspersed by the world’s 
responses

• Best action is to make the choice with the 
greatest expected value

• … decision analysis

Example: Acute Renal Failure

• Based on Gorry, et al., AJM 55, 473-484, 1973.
• Choice of a handful (8) of therapies (antibiotics, 

steroids, surgery, etc.)
• Choice of a handful (3) of invasive tests 

(biopsies, IVP, etc.)
• Choice of 27 diagnostic “questions” (patient 

characteristics, history, lab values, etc.)
• Underlying cause is one of 14 diseases

– We assume one and only one disease

Entropy of a distribution

∑
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For example:
H(.5, .5) = 1.0
H(.1, .9) = 0.47
H(.01, .99) = 0.08
H(.001, .999) = 0.01

H(.33, .33, .33) = 1.58 (!)
H(.005, .455, .5) = 1.04
H(.005, .995, 0) = 0.045

(!) -- should use logn

P

j
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Interacting with ARF in 1973
Question 1: What is the patient's age?
1 0-10
2 11-30
3 31-50
4 51-70
5 Over 70
Reply: 5

The current distribution is:
Disease Probability
FARF 0.58
IBSTR 0.22
ATN 0.09

Question 2: What is the patient's sex?
1 Male
2 Pregnant Female
3 Non-pregnant Female
Reply: 1
. . .

ARF in 1994

Local Sensitivity Analysis Case-specific Likelihood Ratios

Assumptions in ARF

• Exhaustive, mutually exclusive set of 
diseases

• Conditional independence of all questions, 
tests, and treatments

• Cumulative (additive) disutilities of tests 
and treatments

• Questions have no modeled disutility, but 
we choose to minimize the number asked 
anyway

DeDombal, et al. Experience
1970’s & 80’s

• “Idiot Bayes” for appendicitis
• 1.  Based on expert estimates -- lousy
• 2.  Statistics -- better than docs
• 3.  Different hospital -- lousy again
• 4.  Retrained on local statistics -- good
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Probabilistic Models

• What to represent?
– Disease
– Finding (signs, symptoms, labs, radiology, …)
– Syndromes
– History, predisposing conditions
– Treatments

• modify disease, cause new symptoms, …
– (Outcomes, preferences, …)

State Space

• Set of random variables
• Possible values of each
• Assignment of probability to every possible 

combination of values of all variables
• p(v1=a1, v2=a2, v3=a3, …)

Questions of Interest

• Given a set of values of certain variables, 
what is the probability that certain other 
variables have certain other values?

• E.g., p(v1=a1, v7=a7|v2=a2, v4=a4)
=p(v1=a1, v7=a7, v2=a2, v4=a4)

/p(v2=a2, v4=a4)
• We don’t care about all other variables

– marginalize; i.e., sum over them all

Computational Cost

• For n binary variables, we need probability 
assignments to 2n states.

• In programs such as DXPLAIN, n is on the 
order of thousands.

• Need to be very careful and clever
– simple models
– approximate solution techniques

Independence

• Two random variables are independent iff
p(A&B)=p(A)p(B)

• Usually, however, variables may depend 
on others, but we are still interested 
whether they have a conditional 
dependence

• Two random variables are conditionally 
independent if for a conditioning variable 
D, p(A&B|D)=p(A|D)p(B|D)

Independence was crucial to 
ARF

• Diseases were dependent; mutually 
exhaustive and exclusive.

• Questions were conditionally independent, 
given disease.
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ARF model convenient

• Odds: O(D)=P(D)/P(~D)=P(D)/(1-P(D))
• Likelihood ratio: L(S|D)=P(S|D)/P(S|~D)
• Bayes:O(D|S)=O(D)L(S|D)
• Multiple evidence:
• O(D|S1&S2&…)=O(D)L(S1|D)L(S2|D)…
• Log transform:
• W(D|S1&S2&…)

=W(D)+W(S1|D)+W(S2|D)+…

Side comment on likelihood 
ratio

• L(s|d)=p(s|d)/p(s|~d) is constant only if ~d 
is a “fixed” entity

• If, as in ARF, we have d1, d2, d3, …, then
p(s|~dj)=

• As probabilities vary over the dj, p(s|~ dj) 
will vary!

∑
≠ ji

ii dspdp )|()(

What if we made no 
assumptions in ARF?

• Any combination of diseases: 2^14=16K
• Distinct probability for any combination of 

answers to any questions:
p(q1=a12&q2=a24&…)
3^27=7.7*10^12

• p(q1=a12&q2=a24&…|d1&d2&~d3&…)
2^14*3^27 = 1.25*10^17, just for ARF

• Simplification is essential!

Conditional Independence is not 
Independence

• P(b&c|a)=P(a&b&c)/P(a)

• But 
P(b&c)=p(a)p(b&c|a)+p(~a)p(b&c|~a)

Conditional independence is not 
independence

• Information may still “flow” from one observation to another, 
even if they are conditionally independent given a disease, 
unless the disease is known with certainty

• p(D)=.2
• p(A|D)=.8, p(A|~D)=.1
• p(B|D)=.6, p(B|~D)=.1
• a priori, p(A)=.16+.08=.24, p(B)=.12+.04=.16
• P(D|A)=.67
• P(B|A)=.40+.03=.43, not .16!
• But, if p(D)=0 or 1, no effect.

D

BA

• Two variables may be made conditionally 
dependent when we learn about a common 
descendant

• p(A)=.2, p(B)=.1
• p(C|A&B)=.8, p(C|A&~B)=.4
• p(C|~A&B)=.6, p(C|~A&~B)=.1
• p(C)=.2*.1*.8+.2*.9*.4+.8*.1*.6+.8*.9*.1=.208
• If we observe C, p(A&B)=.02*.8/.208=.077, but 

p(A)=.42, p(B)=.31.  p(a&b|c) neq p(a|c)*p(b|c)

Conditional independence is not 
independence

A

C

B
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We don’t want to model high-
arity dependence

• P(C|A1&~A2&~A3&A4&…)
• too many probabilities
• Can we simplify?

– Noisy or
– noisy and
– noisy max/min
– ?

A1

C

A2 A3 A4 A5 …

Noisy or

• p(C|A&B)=p(“C happened because of A”) 
* p(“C happened because of B”) 
* p(“C happened anyway”)

• (1-p(C|A&B)) =
(1-pc(C|A))*(1-pc(C|B))*(1-L)

• pc(C|A)<=p(C|A)

Simple Models
(Singly-Connected)
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How to propagate likelihood
information?
Like likelihood ratios.
(Pearl poly-tree algorithm)

Causality?

• Noisy-or (and, …)
• Bayes arrows are/are not causal

– reversing an arrow adds new dependencies

A

B

C A

B

C

General Case Bayes Nets
(Multiply-connected DAGs)
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Cooper’s MCBN1
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Factoring to Simplify 
Computation
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In this simple example, 12 instead of 32 multiplications
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How to build Bayes Nets?

• David 
Heckerman
, 
Pathfinder/
Intellipath, 
around 
1990


