

Simplest Example				
 Relationship between a diagnostic conclusion and a diagnostic test 		Disease Present	Disease Absent	
	Test Positive	True Positive	False Positive	TP+FP
	Test Negative	False Negative	True Negative	FN+TN
		TP+FN	FP+TN	

Assumptions in ARF

- Exhaustive, mutually exclusive set of diseases
- Conditional independence of all questions, tests, and treatments
- Cumulative (additive) disutilities of tests and treatments
- Questions have no modeled disutility, but we choose to minimize the number asked anyway

DeDombal, *et al.* Experience 1970's & 80's

- "Idiot Bayes" for appendicitis
- 1. Based on expert estimates -- lousy
- 2. Statistics -- better than docs
- 3. Different hospital -- lousy again
- 4. Retrained on local statistics -- good

Probabilistic Models

- What to represent?
 - Disease
 - Finding (signs, symptoms, labs, radiology, ...)
 - Syndromes
 - History, predisposing conditions
 - Treatments
 - modify disease, cause new symptoms, ...
 - (Outcomes, preferences, \ldots)

State Space

- · Set of random variables
- Possible values of each
- Assignment of probability to every possible combination of values of all variables
- p(v1=a1, v2=a2, v3=a3, ...)

Questions of Interest

- Given a set of values of certain variables, what is the probability that certain other variables have certain other values?
- E.g., p(v1=a1, v7=a7|v2=a2, v4=a4)
 =p(v1=a1, v7=a7, v2=a2, v4=a4)
 /p(v2=a2, v4=a4)
- We *don't care* about all other variables – marginalize; i.e., sum over them all

Computational Cost

- For *n* binary variables, we need probability assignments to 2^{*n*} states.
- In programs such as DXPLAIN, *n* is on the order of thousands.
- Need to be *very* careful and clever simple models
 - approximate solution techniques

Independence

- Two random variables are *independent* iff p(A&B)=p(A)p(B)
- Usually, however, variables may depend on others, but we are still interested whether they have a conditional dependence
- Two random variables are conditionally independent if for a conditioning variable D, p(A&B|D)=p(A|D)p(B|D)

Independence was crucial to ARF

- Diseases were *dependent*, mutually exhaustive and exclusive.
- Questions were conditionally independent, given disease.

ARF model convenient

- Odds: O(D)=P(D)/P(~D)=P(D)/(1-P(D))
- Likelihood ratio: L(S|D)=P(S|D)/P(S|~D)
- Bayes:O(D|S)=O(D)L(S|D)
- Multiple evidence:
- O(D|S1&S2&...)=O(D)L(S1|D)L(S2|D)...
- Log transform:
- W(D|S1&S2&...)
 - =W(D)+W(S1|D)+W(S2|D)+...

Side comment on likelihood ratio

- L(s|d)=p(s|d)/p(s|~d) is constant only if ~d is a "fixed" entity
- If, as in ARF, we have d1, d2, d3, ..., then $p(s|\sim d_j) = \sum_{i=1}^{n} p(d_i) p(s|d_i)$
- As probabilities vary over the d_j, p(s|~ d_j) will vary!

What if we made no assumptions in ARF?

- Any combination of diseases: 2^14=16K
- Distinct probability for any combination of answers to any questions: p(q1=a12&q2=a24&...) 3^27=7.7*10^12
- p(q1=a12&q2=a24&...|d1&d2&~d3&...) 2^14*3^27 = 1.25*10^17, just for ARF
- Simplification is essential!

Conditional Independence is not Independence

- P(b&c|a)=P(a&b&c)/P(a)
- But P(b&c)=p(a)p(b&c|a)+p(~a)p(b&c|~a)

Conditional independence is not independence

- Information may still "flow" from one observation to another, even if they are conditionally independent given a disease, unless the disease is known with certainty
- p(D)=.2
- p(A|D)=.8, p(A|~D)=.1
 p(B|D)=.6, p(B|~D)=.1
- A
- *a priori*, p(A)=.16+.08=.24, p(B)=.12+.04=.16
- P(D|A)=.67
- P(B|A)=.40+.03=.43, not .16!
- But, if p(D)=0 or 1, no effect.

Conditional independence is not independence

- Two variables may be made *conditionally dependent* when we learn about a common descendant
- p(A)=.2, p(B)=.1
- p(C|A&B)=.8, p(C|A&~B)=.4
- p(C|~A&B)=.6, p(C|~A&~B)=.1
- p(C)=.2*.1*.8+.2*.9*.4+.8*.1*.6+.8*.9*.1=.208
- If we observe C, p(A&B)=.02*.8/.208=.077, but p(A)=.42, p(B)=.31. p(a&b|c) neq p(a|c)*p(b|c)

